The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^2 - 2*x1 + 1 1 x1] [1 0 1 -x1^2 0 1 0 x1 -x1^2 x1 x1^2] [0 0 0 0 1 1 1 x1 - 1 -x1^2 + x1 - 1 x1 x1^2 - x1 + 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-4*x1^10 + 20*x1^9 - 54*x1^8 + 98*x1^7 - 128*x1^6 + 123*x1^5 - 86*x1^4 + 42*x1^3 - 13*x1^2 + 2*x1) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, x1^2 - x1 + 1, 2*x1^2 - 2*x1 + 1, x1^3 - x1 + 1, x1^3 - x1^2 + 1, x1^2 - 2*x1 + 2, 2*x1 - 1, x1^3 - 3*x1^2 + 2*x1 - 1, 3*x1^2 - 3*x1 + 2, 2*x1^2 - 3*x1 + 2]